Public Key Cryptography

Inside PKCS

Rajaram Pejaver

Press the <Page Down> key to advance Press the <Back space> key to replay a slide

Outline This is *not* a talk about PKI. This is a prerequisite for PKI.

- Background: Shared Secret Keys
- Public Key Cryptography
 - Key Exchange explained
- Key Exchange using Diffie-Hellman
- Key Exchange using RSA
- Signatures using RSA
- Applications of PKC
- Problems/issues with PKC

Background: Shared Secret Keys It takes two to share a secret

Say, Alice & Bob communicate using shared secret keys

- Alice encrypts text and Bob decrypts it, using the same key

 $K_{AB} \bigcap K_{AB} \bigcap K_{AB} Only 1 \text{ Key is needed.}$ - But when Alice, Bob, Carol & Dave want to communicate $K_{AB} \bigcap K_{AC} \bigcap K_{CD} \bigcap K_{BC} \bigcap K_{$

(c) Rajaram Pejaver

Public Key Cryptography No sharing of private information.

- Public Key Cryptography keys come in pairs:
 - Public component: P_A, Shared with everyone.
 - Private component: K_A, Never shared or exposed.
- Each person needs only one key pair, ever.
 - Scales linearly: 4 keys for 4 subjects.
 - Much easier to secure private component.
- Problem: Encryption is slow & compute intensive.
 - Cannot encrypt messages with PKC.
- Solution: Use PKC to establish a shared secret session key.
 - This is called Key Exchange.
 - Alice & Bob agree to use K_{AB} without anyone else finding out.

 P_A, P_B, P_C, P_D

K_A

K

Diffie-Hellman Algorithm (1) Key Exchange Only. No direct encryption. No signatures.

- First, everyone agrees on a number for 'generator value': **g**
- Each person picks a random number as Private Key:
- Each person computes their Public Key, P_A:
- Alice and Bob exchange their public keys.
 - PrivatePublic KeyExponentiationAlice K_A $P_A = g \wedge K_A$ $P_A \wedge K_B = (g \wedge K_A) \wedge K_B = g \wedge (K_A * K_B)$ Bob K_B $P_B = g \wedge K_B$ $P_B \wedge K_A = (g \wedge K_B) \wedge K_A = g \wedge (K_A * K_B)$
- Each person exponentiates other's public key with their own private key.

- Ta da... Both parties have computed the same value:
 - They can use this value to compute a shared secret key.

 $g^{(K_{\Delta} * K_{B})$

K₄

 $\mathbf{g}^{\mathbf{K}_{\mathbf{A}}}$ (i.e. $\mathbf{g} \wedge \mathbf{K}_{\mathbf{A}}$)

 $P_{A} \leftrightarrow P_{R}$

Diffie-Hellman Algorithm (2) Example: using regular math and small numbers.

- First, everyone agrees on a number for 'generator value': g = 8
- Each person picks a random number as Private Key:
 - $K_A = 6, \qquad K_B = 4$
- Each person computes their Public Key, P_A and P_B :

$$- P_A = g^{K_A} = 8^6 = 262\,144, \qquad P_B = g^{K_B} = 8^4 = 4\,096$$

• Each person exponentiates other's public key with their own private key.

	Private	Public Key	Exponentiation		
Alice	6	262 144	262 144^4 = 4 722 366 482 869 645 213 696		
Bob	4	4 096	4 096^6 = 4 722 366 482 869 645 213 696		

• They can use this value to compute a shared secret key.

Diffie-Hellman Algorithm (3) Some analysis.

- Note how big the result got, even though we used single digit keys.
 - The result was 22 digits long!
- Yet, Alice's private key can be easily hacked.
 - Given the value of *g* and Alice's public key, calculate the log function:
 K_A = log_g(P_A)
- One solution, we could use much larger numbers for keys and for *g*.
 - That helps a bit, but not anywhere near enough.
- Next solution: Use a different number system: Modulo arithmetic field.
 - It is much harder to calculate log functions in modulo fields.
 - Discrete logarithm problem in modular fields is NP complete.
 - In addition to **g**, we need to pick a system wide prime modulus **p**.
 - *p* > *g*

Diffie-Hellman Algorithm (4) Using modular arithmetic and small numbers.

- Besides g, agree on 'prime modulus' p: g = 8, p = 17
- Each person picks a random number as Private Key:
 - $K_A = 6, K_B = 4$
- Each person computes their Public Key, P_A and P_B :

$$- P_A = g^{K_A} \% 17 = 8^6 \% 17 = 262 144 \% 17 = 4$$

 $- P_B = g^{K_B} \% 17 = 8^4 \% 17 = 4096 \% 17 = 16$

• Each person exponentiates other's public key with their own private key.

	Private	Public Key	Exponentiation		
Alice	6	4	4 ^ 4 % 17 = 256 % 17 = 1		
Bob	4	16	16 ^ 6 % 17 = 16 777 216 % 17 = 1		

• Foundation: Given \boldsymbol{g} , \boldsymbol{p} and $P_A(\boldsymbol{g^{K_A}\% p})$ it is not easy to calculate K_A .

Diffie-Hellman Algorithm (5) Elliptic Curve math.

• Given a polynomial of the form: $y^2 = x^3 + ax + b$

- The points on the curve form a closed set of numbers constituting a field.
- Adding two points $M_3 = M_1 + M_2 = -P$
- Doubling a point $M_4 = M_2 + M_2$
- Multiply two points $M_5 = M_1 * M_2 = M_1 + M_1 + M_1 \dots (M_2 \text{ times})$
- Foundation: Given M₅ and M₁, it is not easy to g
 - Can't easily find the multiplicative inverse
- Multiply other's public key with own private key
 - Alice and Bob have both calculated: $g * \kappa_A * \kappa_B$

		Public Key	Multiplication	
Alice	KA	$P_A = g * K_A$	$P_A * K_B = g * K_A * K_B$	
Bob	KB	$P_B = g * K_B$	$P_B * K_A = g * K_B * K_A$	

Diffie-Hellman Algorithm (6) EC Cryptography: Final thoughts.

- EC Math is more complex & slower, hence smaller keys are adequate.
 - Further, EC performance scales better.
- Key sizes (in bits) for comparable strengths in different systems
 - Cost factor compares EC to PKC

Symmetric Keys	PKC Keys	EC Keys	Cost Factor
80	1024	160	3
112	2048	224	6
128	3072	256	10
192	7680	384	32
256	15360	521	64

- Remember: Diffie Hellman supports
 - ONLY Key Exchange.
 - No signatures.
 - No direct encryption.

Key Exchange using RSA (1) Basic Concepts.

- Key generation:
 - Select modulus *n*, product of two primes: *n* = *p* * *q*
 - Select public exponent **e**.
 - A good choice is F_4 (65537).
 - Select private exponent d
 - such that *d* * *e* = 1 modulo LCM(*p* 1, *q* 1)
 - *d* is the multiplicative inverse of *e*
- Encryption consists of modular exponentiation of plaintext *m* with *e*
 - $m^e \% n \rightarrow c$ (where m < n)
- Decryption consists of modular exponentiation of encrypted text *c* with *d*
 - $c^{d} \% n \rightarrow (m^{e}) {}^{d} \% n \rightarrow m^{ed} \% n \rightarrow m$
 - Because in the exponent, $e^*d = 1$ (kind of \odot)

IN RSA WE TRUST

Key Exchange using RSA (2) Example: using modulo math and small numbers.

- Key generation by Alice:
 - p = 971, q = 719, n = 698149 (p^*q)
 - **e** = 3, **d** = 464307
- Encryption by Bob with Public Key e: Plain text m = 123
 - 123^3 % 698149 = 464569
- Decryption by Alice with Private Key *d*: Crypto text = 464569
 - 464569^464307 % 698149 = 123 !!!
- Plaintext chosen by Bob would be the proposed secret session key K_{AB}
 - Only Alice has private key d and can decrypt the message to retrieve K_{AB} .
- Calculator: <u>http://people.eku.edu/styere/Encrypt/RSAdemo.html</u>

Signatures using RSA Similar to encryption, but backwards.

- Use the same keys as before.
- Signing consists of modular exponentiation of plaintext *m* with *d*
 - $s = m^d \% n$
- Verification consists of modular exponentiation of signature *s* with *e*
 - $s^{e} \% n \rightarrow (m^{d}) {}^{e} \% n \rightarrow m^{ed} \% n \rightarrow m$
- As an example, Alice signs with Private Key *d* the value m = 123.
 - 123⁴64307 % 698149 = 91655
- Bob validates the signature using Alice's Public Key e
 - 91655³ % 698149 = 123
- EC math can be used with RSA
 - NSA has defined a "Suite B" that includes EC-RSA

PKC Issues & Problems The need for certificates, CAs, chaining, revocation.

- Associating Public Keys with actual subjects.
 - When you encrypt, how do you know that you have the correct public key for Alice?
 - Are you sending a message securely to the wrong person?
 - We need a secure directory. DNS isn't good enough.
 - The X.500 directory service happened to be under development at the time.
- Only one public key is needed per person
 - You can have many names and many associations and many certificates
 - Protect the private key in hardware
- X.509 certificates securely associate X.500 names with public keys
 - A trusted Certificate Authority vouches for the association
- Certificate revocation is messy
 - CRLs, OCSP, ...

PKC Applications Encryption, Signatures, Authorization.

Examples of PKC usage:

- Public Key based Encryption:
 - Conditional Access in SA PowerKey. EMMs are encrypted with PKC.
 - SSL, ssh, IPSEC, etc. for connection encryption.
 - PGP for file encryption.
 - SecurID fobs do not use RSA, even though it is labeled as such.
- Signatures to establish identity.
 - STB firmware, cable modem firmware,
- Authorization certificates.
 - Difference between Identity and Authorization certificates (PACs)

Thank you for listening!!

"Encryption software is expensive...so we just rearranged all the letters on your keyboard."