
Public Key Cryptography

Inside PKCS

Rajaram Pejaver

Press the <Page Down> key to advance

Press the <Back space> key to replay a slide

(c) Rajaram Pejaver 2

Outline
This is not a talk about PKI. This is a prerequisite for PKI.

 Background: Shared Secret Keys

 Public Key Cryptography
– Key Exchange explained

 Key Exchange using Diffie-Hellman

 Key Exchange using RSA

 Signatures using RSA

 Applications of PKC

 Problems/issues with PKC

(c) Rajaram Pejaver 3

Say, Alice & Bob communicate using shared secret keys

– Alice encrypts text and Bob decrypts it, using the same key

– But when Alice, Bob, Carol & Dave want to communicate

Background: Shared Secret Keys
It takes two to share a secret

KAB KAB

KAB

KAC

KAD

KAB

KBC

KBD

KAC

KBC

KCD

KAD

KBD

KCD

Carol

Dave

Only 1 Key is needed.

Total of 6 Keys needed.

Nkeys = n * (n – 1) / 2

For 100 communicants, Nkeys

will be ~5000 !

For 1000 communicants,

Nkeys will be ~500,000 !!

(c) Rajaram Pejaver 4

 Public Key Cryptography keys come in pairs:

– Public component: PA, Shared with everyone.

– Private component: KA, Never shared or exposed.

 Each person needs only one key pair, ever.

– Scales linearly: 4 keys for 4 subjects.

– Much easier to secure private component.

 Problem: Encryption is slow & compute intensive.

– Cannot encrypt messages with PKC.

 Solution: Use PKC to establish a shared secret session key.

– This is called Key Exchange.

– Alice & Bob agree to use KAB without anyone else finding out.

Public Key Cryptography
No sharing of private information.

KA KB

KC

KD

PA, PB, PC, PD

(c) Rajaram Pejaver 5

Diffie-Hellman Algorithm (1)
Key Exchange Only. No direct encryption. No signatures.

 First, everyone agrees on a number for ‘generator value’: g

 Each person picks a random number as Private Key: KA

 Each person computes their Public Key, PA: gK
A (i.e. g ^ KA)

 Alice and Bob exchange their public keys. PA PB

 Each person exponentiates other’s public key with their own private key.

 Ta da… Both parties have computed the same value: g ^ (KA* KB)

– They can use this value to compute a shared secret key .

 Private Public Key Exponentiation

Alice KA PA = g ^ KA PA ^ KB = (g ^ KA) ^ KB = g ^ (KA* KB)

Bob KB PB = g ^ KB PB ^ KA = (g ^ KB) ^ KA = g ^ (KA* KB)

(c) Rajaram Pejaver 6

Diffie-Hellman Algorithm (2)
Example: using regular math and small numbers.

 First, everyone agrees on a number for ‘generator value’: g = 8

 Each person picks a random number as Private Key:

– KA = 6, KB = 4

 Each person computes their Public Key, PA and PB:

– PA = gKA = 86 = 262 144, PB = gKB = 84 = 4 096

 Each person exponentiates other’s public key with their own private key.

 They can use this value to compute a shared secret key.

 Private Public Key Exponentiation

Alice 6 262 144 262 144^4 = 4 722 366 482 869 645 213 696

Bob 4 4 096 4 096^6 = 4 722 366 482 869 645 213 696

(c) Rajaram Pejaver 7

Diffie-Hellman Algorithm (3)
Some analysis.

 Note how big the result got, even though we used single digit keys.

– The result was 22 digits long!

 Yet, Alice’s private key can be easily hacked.

– Given the value of g and Alice’s public key, calculate the log function:

 KA = logg(PA)

 One solution, we could use much larger numbers for keys and for g.

– That helps a bit, but not anywhere near enough.

 Next solution: Use a different number system: Modulo arithmetic field.

– It is much harder to calculate log functions in modulo fields.

 Discrete logarithm problem in modular fields is NP complete.

– In addition to g, we need to pick a system wide prime modulus p.

 p > g

(c) Rajaram Pejaver 8

Diffie-Hellman Algorithm (4)
Using modular arithmetic and small numbers.

 Besides g, agree on ‘prime modulus’ p: g = 8, p = 17

 Each person picks a random number as Private Key:

– KA = 6, KB = 4

 Each person computes their Public Key, PA and PB:

– PA = gKA % 17 = 86 % 17 = 262 144 % 17 = 4

– PB = gKB % 17 = 84 % 17 = 4 096 % 17 = 16

 Each person exponentiates other’s public key with their own private key.

 Foundation: Given g, p and PA (g^KA % p) it is not easy to calculate KA.

 Private Public Key Exponentiation

Alice 6 4 4 ^ 4 % 17 = 256 % 17 = 1

Bob 4 16 16 ^ 6 % 17 = 16 777 216 % 17 = 1

(c) Rajaram Pejaver 9

Diffie-Hellman Algorithm (5)
Elliptic Curve math.

 Given a polynomial of the form:

– The points on the curve form a closed set of numbers constituting a field.

– Adding two points M3 = M1 + M2 = -P

– Doubling a point M4 = M2 + M2

– Multiply two points M5 = M1 * M2 = M1 + M1 + M1 … (M2 times)

 Foundation: Given M5 and M1, it is not easy to get M2

– Can’t easily find the multiplicative inverse

 Multiply other’s public key with own private key

– Alice and Bob have both calculated: g * KA * KB

M4

 Public Key Multiplication

Alice KA PA = g * KA PA * KB = g * KA * KB

Bob KB PB = g * KB PB * KA = g * KB * KA

(c) Rajaram Pejaver 10

Diffie-Hellman Algorithm (6)
EC Cryptography: Final thoughts.

 EC Math is more complex & slower, hence smaller keys are adequate.

– Further, EC performance scales better.

 Key sizes (in bits) for comparable strengths in different systems

– Cost factor compares EC to PKC

 Remember: Diffie Hellman supports

– ONLY Key Exchange.

– No signatures.

– No direct encryption.

Symmetric

Keys

PKC

Keys

EC

Keys

Cost

Factor

80 1024 160 3

112 2048 224 6

128 3072 256 10

192 7680 384 32

256 15360 521 64

(c) Rajaram Pejaver 11

Key Exchange using RSA (1)
Basic Concepts.

 Key generation:

– Select modulus n, product of two primes: n = p * q

– Select public exponent e.

 A good choice is F4 (65537).

– Select private exponent d

 such that d * e = 1 modulo LCM(p - 1, q - 1)

 d is the multiplicative inverse of e

 Encryption consists of modular exponentiation of plaintext m with e

– me % n c (where m < n)

 Decryption consists of modular exponentiation of encrypted text c with d

– cd % n (me) d % n med % n m

– Because in the exponent, e*d = 1 (kind of)

(c) Rajaram Pejaver 12

Key Exchange using RSA (2)
Example: using modulo math and small numbers.

 Key generation by Alice:

– p = 971, q = 719, n = 698149 (p*q)

– e = 3, d = 464307

 Encryption by Bob with Public Key e: Plain text m = 123

– 123^3 % 698149 = 464569

 Decryption by Alice with Private Key d: Crypto text = 464569

– 464569^464307 % 698149 = 123 !!!

 Plaintext chosen by Bob would be the proposed secret session key KAB

– Only Alice has private key d and can decrypt the message to retrieve KAB.

 Calculator: http://people.eku.edu/styere/Encrypt/RSAdemo.html

http://people.eku.edu/styere/Encrypt/RSAdemo.html

(c) Rajaram Pejaver 13

Signatures using RSA
Similar to encryption, but backwards.

 Use the same keys as before.

 Signing consists of modular exponentiation of plaintext m with d

– s = md % n

 Verification consists of modular exponentiation of signature s with e

– se % n (md) e % n med % n m

 As an example, Alice signs with Private Key d the value m = 123.

– 123^464307 % 698149 = 91655

 Bob validates the signature using Alice’s Public Key e

– 91655^3 % 698149 = 123

 EC math can be used with RSA

– NSA has defined a “Suite B” that includes EC-RSA

(c) Rajaram Pejaver 14

PKC Issues & Problems
The need for certificates, CAs, chaining, revocation.

 Associating Public Keys with actual subjects.
– When you encrypt, how do you know that you have the correct public key for Alice?

– Are you sending a message securely to the wrong person?

– We need a secure directory. DNS isn’t good enough.

– The X.500 directory service happened to be under development at the time.

 Only one public key is needed per person
– You can have many names and many associations and many certificates

– Protect the private key in hardware

 X.509 certificates securely associate X.500 names with public keys
– A trusted Certificate Authority vouches for the association

 Certificate revocation is messy
– CRLs, OCSP, …

(c) Rajaram Pejaver 15

PKC Applications
Encryption, Signatures, Authorization.

Examples of PKC usage:

 Public Key based Encryption:
– Conditional Access in SA PowerKey. EMMs are encrypted with PKC.

– SSL, ssh, IPSEC, etc. for connection encryption.

– PGP for file encryption.

– SecurID fobs do not use RSA, even though it is labeled as such.

 Signatures to establish identity.
– STB firmware, cable modem firmware,

 Authorization certificates.
– Difference between Identity and Authorization certificates (PACs)

(c) Rajaram Pejaver 16

Thank you for listening!!

 Questions?

 Send feedback to
rajaram@pejaver.com

